FIXED WING ROTARY WING SPACE WWII SHOP
PREVIOUS NEXT
Continued From Previous Page Advances in low-observable technologies provide significantly improved survivability and lethality against air-to-air and surface-to-air threats. The F-22 brings stealth into the day, enabling it not only to protect itself but other assets. The F-22 engines produce more thrust than any current fighter engine. The combination of sleek aerodynamic design and increased thrust allows the F-22 to cruise at supersonic airspeeds (greater than 1.5 Mach) without using afterburner - - a characteristic known as supercruise. Supercruise greatly expands the F-22 's operating envelope in both speed and range over current fighters, which must use fuel-consuming afterburner to operate at supersonic speeds. The sophisticated F-22 aerodesign, advanced flight controls, thrust vectoring, and high thrust-to-weight ratio provide the capability to outmaneuver all current and projected aircraft. The F-22 design has been extensively tested and refined aerodynamically during the development process. The F-22's characteristics provide a synergistic effect ensuring F-22A lethality against all advanced air threats. The combination of stealth, integrated avionics and supercruise drastically shrinks surface-to-air missile engagement envelopes and minimizes enemy capabilities to track and engage the F-22 . The combination of reduced observability and supercruise accentuates the advantage of surprise in a tactical environment. The F-22 will have better reliability and maintainability than any fighter aircraft in history.  Increased F-22 reliability and maintainability pays off in less manpower required to fix the aircraft and the ability to operate more efficiently. Background The Advanced Tactical Fighter entered the Demonstration and Validation phase in 1986. The prototype aircraft (YF-22 and YF-23) both completed their first flights in late 1990. Ultimately the YF-22 was selected as best of the two and the engineering and manufacturing development effort began in 1991 with development contracts to Lockheed/Boeing (airframe) and Pratt & Whitney (engines). EMD included extensive subsystem and system testing as well as flight testing with nine aircraft at Edwards Air Force Base, Calif. The first EMD flight was in 1997 and at the completion of its flight test life this aircraft was used for live-fire testing. Continued on Next Page